首页   新闻资讯   供应求购   钨的知识   人才招聘  生产设备   辅助材料   业界知识   繁體中文   英语語版   日本語版   论坛
钨报价:  硬质合金 高比重合金 三氧化钨 纯钨产品 钨铜产品 钨制品 钨矿类 钨粉末  难熔金属:       稀土  会员服务
有色首页
钼系
镍系
钴系
钒系
钛系
稀土
硅系
镁铟锡镓
锰系
铬系
锑系
钽铌硒镉
新闻搜索
相 关 文 章
普通文章需求不佳,锰市行情难突破
普通文章海绵钛上游再现弱势,国内外钛铁…
普通文章钒市成交僵持 短期将弱势偏稳运行
普通文章硅铁市场暂稳 高品位金属硅小幅下…
普通文章硅铬价格下跌,铬铁持弱运行
普通文章BHP调低锰矿期货报价 锰矿市场颓…
普通文章承钢含钒铁水三脱炼钢新技术成功…
普通文章铬市场行情简评-2012.9.6
推荐新闻
普通文章国内钴市场最新价格
普通文章国内钼市场最新价格
普通文章需求不佳,锰市行情难突破
普通文章海绵钛上游再现弱势,国内外钛铁…
普通文章钒市成交僵持 短期将弱势偏稳运行
普通文章硅铁市场暂稳 高品位金属硅小幅下…
普通文章国内钴市场最新价格
普通文章国内钼市场最新价格
热图新闻

中国完成七项任务可成全球

运7预警机若上中国航母 将
Thermal Spraying
作者:Yu    文章来源:网络转载    更新时间:2011-7-13 17:41:33

Thermal Spraying


Thermal spraying techniques are coating processes in which melted (or heated) materials are sprayed onto a surface. The "feedstock" (coating precursor) is heated by electrical (plasma or arc) or chemical means (combustion flame).

 

Thermal spraying can provide thick coatings (approx. thickness range is 20 micrometers to several mm, depending on the process and feedstock), over a large area at high deposition rate as compared to other coating processes such as electroplating, physical and chemical vapor deposition. Coating materials available for thermal spraying include metals, alloys, ceramics, plastics and composites. They are fed in powder or wire form, heated to a molten or semimolten state and accelerated towards substrates in the form of micrometer-size particles. Combustion or electrical arc discharge is usually used as the source of energy for thermal spraying. Resulting coatings are made by the accumulation of numerous sprayed particles. The surface may not heat up significantly, allowing the coating of flammable substances.

 

Coating quality is usually assessed by measuring its porosity, oxide content, macro and micro-hardness, bond strength and surface roughness. Generally, the coating quality increases with increasing particle velocities.

 

Several variations of thermal spraying are distinguished:

    Plasma spraying

    Detonation spraying

    Wire arc spraying

    Flame spraying

    High velocity oxy-fuel coating spraying (HVOF)

    Warm spraying

    Cold spraying

 

In classical (developed between 1910 and 1920) but still widely used processes such as flame spraying and wire arc spraying, the particle velocities are generally low (< 150 m/s), and raw materials must be molten to be deposited. Plasma spraying, developed in the 1970s, uses a high-temperature plasma jet generated by arc discharge with typical temperatures >15000 K, which makes it possible to spray refractory materials such as oxides, molybdenum, etc.

System overview

 

A typical thermal spray system consists of the following:

    Spray torch (or spray gun) - the core device performing the melting and acceleration of the particles to be deposited

    Feeder - for supplying the powder, wire or liquid to the torch

    Media supply - gases or liquids for the generation of the flame or plasma jet, gases for carrying the powder, etc.

    Robot - for manipulating the torch or the substrates to be coated

    Power supply - often standalone for the torch

    Control console(s) - either integrated or individual for all of the above

 

Wire flame spraying

 

In plasma spraying process, the material to be deposited (feedstock) — typically as a powder, sometimes as a liquid, suspension or wire — is introduced into the plasma jet, emanating from a plasma torch. In the jet, where the temperature is on the order of 10,000 K, the material is melted and propelled towards a substrate. There, the molten droplets flatten, rapidly solidify and form a deposit. Commonly, the deposits remain adherent to the substrate as coatings; free-standing parts can also be produced by removing the substrate. There are a large number of technological parameters that influence the interaction of the particles with the plasma jet and the substrate and therefore the deposit properties. These parameters include feedstock type, plasma gas composition and flow rate, energy input, torch offset distance, substrate cooling, etc.

 

Deposit properties

 

The deposits consist of a multitude of pancake-like lamellae called 'splats', formed by flattening of the liquid droplets. As the feedstock powders typically have sizes from micrometers to above 100 micrometers, the lamellae have thickness in the micrometer range and lateral dimension from several to hundreds of micrometers. Between these lamellae, there are small voids, such as pores, cracks and regions of incomplete bonding. As a result of this unique structure, the deposits can have properties significantly different from bulk materials. These are generally mechanical properties, such as lower strength and modulus, higher strain tolerance, and lower thermal and electrical conductivity. Also, due to the rapid solidification, metastable phases can be present in the deposits.

 

Applications

 

This technique is mostly used to produce coatings on structural materials. Such coatings provide protection against high temperatures (for example thermal barrier coatings for exhaust heat management), corrosion, erosion, wear; they can also change the appearance, electrical or tribological properties of the surface, replace worn material, etc. When sprayed on substrates of various shapes and removed, free-standing parts in the form of plates, tubes, shells, etc. can be produced. It can also be used for powder processing (spheroidization, homogenization, modification of chemistry, etc.). In this case, the substrate for deposition is absent and the particles solidify during flight or in a controlled environment (e.g., water). A polymer dispersion aerosol can be injected into the plasma discharge in order to create a grafting of this polymer on to a substrate surface. This application is mainly used to modify the surface chemistry of polymers.

Variations

Plasma spraying systems can be categorized by several criteria.

Plasma jet generation:

    direct current (DC plasma), where the energy is transferred to the plasma jet by a direct current, high-power electric arc

    induction plasma or RF plasma, where the energy is transferred by induction from a coil around the plasma jet, through which an alternating, radio-frequency current passes

Plasma-forming medium:

    gas-stabilized plasma (GSP), where the plasma forms from a gas; typically argon, hydrogen, helium or their mixtures

    water-stabilized plasma (WSP), where plasma forms from water (through evaporation, dissociation and ionization) or other suitable liquid

    hybrid plasma - with combined gas and liquid stabilization, typically argon and water

Spraying environment:

    air plasma spraying (APS), performed in ambient air

    controlled atmosphere plasma spraying (CAPS), usually performed in a closed chamber, either filled with inert gas or evacuated

    variations of CAPS: high-pressure plasma spraying (HPPS), low-pressure plasma spraying (LPPS), the extreme case of which is vacuum plasma spraying (VPS, see below)

    underwater plasma spraying

Another variation consists of having a liquid feedstock instead of a solid powder for melting, this technique is known as Solution precursor plasma spray

 

Vacuum plasma spraying

 

Vacuum plasma spraying (VPS) is a technology for etching and surface modification to create porous layers with high reproducibility and for cleaning and surface engineering of plastics, rubbers and natural fibers as well as for replacing CFCs for cleaning metal components. This surface engineering can improve properties such as frictional behavior, heat resistance, surface electrical conductivity, lubricity, cohesive strength of films, or dielectric constant, or it can make materials hydrophilic or hydrophobic.

 

The process typically operates at 39–120 °C to avoid thermal damage. It can induce non-thermally activated surface reactions, causing surface changes which cannot occur with molecular chemistries at atmospheric pressure. Plasma processing is done in a controlled environment inside a sealed chamber at a medium vacuum, around 13–65 Pa. The gas or mixture of gases is energized by an electrical field from DC to microwave frequencies, typically 1–500 W at 50 V. The treated components are usually electrically isolated. The volatile plasma by-products are evacuated from the chamber by the vacuum pump, and if necessary can be neutralized in an exhaust scrubber.

 

In contrast to molecular chemistry, plasmas employ:

    Molecular, atomic, metastable and free radical species for chemical effects.

    Positive ions and electrons for kinetic effects.

 

Plasma also generates electromagnetic radiation in the form of vacuum UV photons to penetrate bulk polymers to a depth of about 10 µm. This can cause chain scissions and cross-linking.

 

Plasmas affect materials at an atomic level. Techniques like X-ray photoelectron spectroscopy and scanning electron microscopy are used for surface analysis to identify the processes required and to judge their effects. As a simple indication of surface energy, and hence adhesion or wettability, often a water droplet contact angle test is used. The lower the contact angle, the higher the surface energy and more hydrophilic the material is.

 

Changing effects with plasma

 

At higher energies ionization tends to occur more than chemical dissociations. In a typical reactive gas, 1 in 100 molecules form free radicals whereas only 1 in 106 ionizes. The predominant effect here is the forming of free radicals. Ionic effects can predominate with selection of process parameters and if necessary the use of noble gases.

 

Wire arc spray

 

Wire arc spray is a form of thermal spraying where two consumable metal wires are fed independently into the spray gun. These wires are then charged and an arc is generated between them. The heat from this arc melts the incoming wire, which is then entrained in air jet from the gun. This entrained molten feedstock is then deposited onto a substrate. This process is commonly used for metallic, heavy coatings.

 

Plasma transferred wire arc

 

Main article: Plasma transferred wire arc

Plasma transferred wire arc is another form of wire arc spray which deposits a coating on the internal surface of a cylinder, or on the external surface of a part of any geometry. It is predominantly known for its use in coating the cylinder bores of an engine, enabling the use of Aluminum engine blocks without the need for heavy cast iron sleeves. A single conductive wire is used as "feedstock" for the system. A supersonic plasma jet melts the wire, atomizes it and propels it onto the substrate. The plasma jet is formed by a transferred arc between a non-consumable cathode and the type of a wire. After atomization, forced air transports the stream of molten droplets onto the bore wall. The particles flatten when they impinge on the surface of the substrate, due to the high kinetic energy. The particles rapidly solidify upon contact. The stacked particles make up a high wear resistant coating. The PTWA thermal spray process utilizes a single wire as the feedstock material. All conductive wires up to and including 0.0625" (1.6mm) can be used as feedstock material, including "cored" wires. PTWA can be used to apply a coating to the wear surface of engine or transmission components to replace a bushing or bearing. For example, using PTWA to coat the bearing surface of a connecting rod offers a number of benefits including reductions in weight, cost, friction potential, and stress in the connecting rod.

 

High velocity oxygen fuel spraying (HVOF)

 

During the 1980s, a class of thermal spray processes called high velocity oxy-fuel spraying was developed: A mixture of gaseous or liquid fuel and oxygen is fed into a combustion chamber, where they are ignited and combusted continuously. The resultant hot gas at a pressure close to 1 MPa emanates through a converging–diverging nozzle and travels through a straight section. The fuels can be gases (hydrogen, methane, propane, propylene, acetylene, natural gas, etc.) or liquids (kerosene, etc.). The jet velocity at the exit of the barrel (>1000 m/s) exceeds the speed of sound. A powder feed stock is injected into the gas stream, which accelerates the powder up to 800 m/s. The stream of hot gas and powder is directed towards the surface to be coated. The powder partially melts in the stream, and deposits upon the substrate. The resulting coating has low porosity and high bond strength.

 

HVOF coatings may be as thick as 12 mm (1/2"). It is typically used to deposit wear and corrosion resistant coatings on materials, such as ceramic and metallic layers. Common powders include WC-Co, chromium carbide, MCrAlY, and alumina. The process has been most successful for depositing cermet materials (WC–Co, etc.) and other corrosion-resistant alloys (stainless steels, nickel-based alloys, aluminium, hydroxyapatite for medical implants, etc.).

 

Cold spraying

 

In the 1990s, cold spraying (often called gas dynamic cold spray) has been introduced. The method was originally developed in Russia with the accidental observation of the rapid formation of coatings, while experimenting with the particle erosion of the target exposed to a high velocity flow loaded with fine powder in a wind tunnel. In cold spraying, particles are accelerated to very high speeds by the carrier gas forced through a converging–diverging de Laval type nozzle. Upon impact, solid particles with sufficient kinetic energy deform plastically and bond metallurgically to the substrate to form a coating. The critical velocity needed to form bonding depends on the materials properties, powder size and temperature. Soft metals such as Cu and Al are best suited for cold spraying, but coating of other materials (W, Ta, Ti, MCrAlY, WC–Co, etc.) by cold spraying has been reported.

 

The deposition efficiency is typically low for alloy powders, and the window of process parameters and suitable powder sizes is narrow. To accelerate powders to higher velocity, finer powders (<20 micrometers) are used. It is possible to accelerate powder particles to much higher velocity using a processing gas having high speed of sound (helium instead of nitrogen). However, helium is costly and its flow rate, and thus consumption, is higher. To improve acceleration capability, nitrogen gas is heated up to about 900 C. As a result, deposition efficiency and tensile strength of deposits increase.

 

Warm spraying

 

Is a novel modification of high velocity oxy-fuel spraying, in which the temperature of combustion gas is lowered by mixing nitrogen with the combustion gas, thus bringing the process closer to the cold spraying. The resulting gas contains much water vapor, unreacted hydrocarbons and oxygen, and thus is dirtier than the cold spraying. However, the coating efficiency is higher. On the other hand, lower temperatures of warm spraying reduce melting and chemical reactions of the feed powder, as compared to HVOF. These advantages are especially important for such coating materials as Ti, plastics, and metallic glasses, which rapidly oxidize or deteriorate at high temperatures.


免责声明:上文仅代表作者或发布者观点,与本站无关。本站并无义务对其原创性及内容加以证实。对本文全部或者部分内容(文字或图片)的真实性、完整性本站不作任何保证或承诺,请读者参考时自行核实相关内容。本站制作、转载、同意会员发布上述内容仅出于传递更多信息之目的,但不表明本站认可、同意或赞同其观点。上述内容仅供参考,不构成投资决策之建议;投资者据此操作,风险自担。如对上述内容有任何异议,请联系相关作者或与本站站长联系,本站将尽可能协助处理有关事宜。谢谢访问与合作!  中钨在线采集制作.


文章录入:yu    责任编辑:yu 
  • 上一个文章:

  • 下一个文章: 没有了
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
    合作伙伴
    中钨在线 中钨莆田公司 高比重网 中国钼网 硬质合金大全 中国钨丝网 中国飞镖网 钨合金镇纸网
    纯钨制品网 中国钨粉网 钨棒材 加热子网 钨合金航空工具 钨铜合金 飞镖网购 厦门中钨
    钨制品目录网 厦门市中医药促协会 金属报价 钨钢首饰 钨合金鱼坠 空间租赁 飞镖商城 钨钼百科

    |加入收藏|关于钨协|联系我们|友情连接|网站招聘|网站业务|


    Copyright © 2000 - 2009 中国钨业新闻网 All Rights Reserved
    建议使用:1024x768分辨率,16位以上颜色、IE5.5以上版本浏览本站
    (本站信息仅提供参考,请注意投资风险!)
    本站部分内容属转载!如果侵犯了您的版权请来信告知,我们将会立即更改。
    Baidu
    map